Universal accelerated
envelop and
some applications

Gasnikov Alexander (MIPT gasnikov.av@mipt.ru)

Joint work with P Dvurechensky, D. Kamzolov, C. Uribe
and from Yahoo side S. Lee, E. Ordentlich


mailto:gasnikov.av@mipt.ru
mailto:gasnikov.av@mipt.ru

Main literature

Gasnikov A. Universal gradient descent. arXiv:1711.00394

Nesterov, Y. Lectures on convex optimization (Vol. 137). Berlin, Germany: Springer, 2018

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020

Lin, Z., Li, H., & Fang, C. Accelerated Optimization for Machine Learning. Springer, 2020

Dvinskikh, D., Kamzolov, D., Gasnikov, A., Dvurechensky, P., Pasechnyk, D., Matykhin, V., &
Chernov, A. (R020). Accelerated meta-algorithm for convex optimization. arXiv:2004.08691



https://arxiv.org/abs/1711.00394
https://arxiv.org/abs/1711.00394
https://arxiv.org/abs/2004.08691
https://arxiv.org/abs/2004.08691

Smooth convex optimization
min f(x)

xeR?

Jax+ (A =0y <tf(x)+ A =f(y), te€]0,1]




Smooth convex optimization
min f(x)

xeR?

Function f has L-Lipschitz confinuous gradient tf:
IVAY) = VIOl < Llly — x|l =

L 2 d
J) £ fx) +(Vfx),y —x) + EHy —x||© Vx,y € R

Function f 15 convex tf:

f) 2 fx) + (Vf(x),y = x) Vx,y € R?
Function f has 1s p-strongly convex if:

) > f(x) + (VAR),y — x) + guy — x| Vx,y € R
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Smooth convex opfimization
min f(x)

reR?
How many times N we should calculate Vf(x) to obtain xy:
floy) = min f3) = fla) = ) < ?
xXe

Let's tntroduce R = ||xy — X«||, where x, is a starting point of considered
algorithm. For gradient descent (when pi is small enough or zero)

. L , 1
X1 = argmin § f(x) + (Vf(x), x — x;) + Ellx —x||° p = x5, — - Vf(x,)
R2

L
f(xN) — f(xe) < 5

Does this algorithm optimal? NO!

N



Smooth convex opfimization

Does gradient descent optimal For convex opfimization? NO!

Algorithm 1 Accelerated algorithm of Nesterov-Monteiro—Svaiter

1: Input: f:R? - R, L > 0.
2: A():O,’y():ﬂ?().
3: for k=0tok=K -1

4:  Define \i41 > 0 and yp..1 € R from

Aerl = =,
k+1 2],

. . . . L .
Yii1 = argmin {f(m (VL) — 3 + S lly - kaQ} =

yER?

N 1 N
= T — ZVf(fz;)

/\A:+1 + \/A;QH_I + 4)\AI+1AAI

Af+1 —

6: LTh41 - — Tk — GA:+1Vf(yk+1).
7. end for

8: return yx

A1 = A + agyr

|

AL R?

fyr) — ) < 1.2




Smooth convex composite opfimization
min {F(x) := f(x) + g} ri) - e < 28

9
xeR? k

Algorithm 2 Composite accelerated algorithm of Nesterov—-Monteiro-Svaiter
1. Input: f: R >R, g: R > R, L > 0.

2: A():O,y():xo.
3. for k=0tok=K —1

>

Define A\i4+1 > 0 and y41 € R? from

Aol = —
k+1 2L7

. . 3 . L 3
Yr+1 = argmin {f(xk) +{(Vf(Zr),y — ) +g(y) + §||y — kaQ}

yeR4

Ak+1 = 9 , Appr = A + agq1
~ Ak Ak+1
k+1 k+1

6 Tgy1 = T — @1V (Ykr1) =1V (Yri1).
7. end for

8: return yg




Smooth convex composi/'-e optimization

min { F(x) := f(x) + g0} F(w) -~ Fle) < 2

xeR?

We assume that auxiliary problem

. L .
Y1 = argimin {f( k) + V(@) y —Tr)+9(y) + §||y - ZL’A-HQ}

yeRd

can be effFiciently solved (g is proximal-friendly).

Example LASSO (L =1_. (ATA))

max

xeR4

1
min {F(x) 1= EHAX — b5+ /1||x||1}

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1), 125-161.
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Accelerated gradient sliding
min {F (x) :=f(x) + g(x)}

xeR?

But (f g 15 wot proximal-friendly, what should we do?

l[dea: To apply Accelerated Algorithm (AA) For next problem

. - - - L -
Yr+1 = argmin {f(J;A) +(V (@), y — Tr)+9(y) + 5”1‘/ - ~LA||2}

yeR4
This problem 1s L-strongly convex. So we should apply proper restarted
version of AA (see below). ln this case the complexity splits (Lf < Lg):

( \ \
2 2
L¢R [ L,R

~S

0 Vf calls 0

Vg calls

E

\ J

E

)

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020
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Data Science applications
min {F(x) 1= (x)+g(x)}

xeR?

fx) = Z £ilx)

[f g 15 proximal-friendly, then ComPos:/'e AA requires
( 3 Rz\
O|m d

E
\ )
But this s not an optimal bound. Optimal bound will be (variance reduction)

( \
max L, R”
Ofm+q[m Vf, calls

5
\ J

I£ g is not proximal-friendly (Kernel SVM) it's an open problem. See below!

Vf, calls

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020
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Yahoo problem: Click-prediction model
min {F(x) = flx) + guxn%}

xeR?

1 m
fo) = — DA fi) = log (1 +exp (~yelae) )
k=1

Let s be a maxtimal number of nonzero elements tn a, and L, = O <||Clk||2),
k=1,...m. The total complexity (arithmetic operations) of optimal First-
order variance-reduced schemes will be (we consider u < &/||x:||?)

( \
\/ max L, R*
O|sm+ s/ m a.o0.
€

\ )

[s (f possible to solve this problem faster? If € 15 small enough the answer s
YES. For that we should use accelerated fensor methods!

11



Problem formulation
min{ ¥ (z) := f (z) + g (z)}

reRd

where f, g - convex.
D' f(a)[n)t = )
i1,0eia>00 D05 1=k

|D* f ()] = I | D" f(x)[h]"]|

OF . .
@)y
Ozy...0x ]

IDPf(x) = DPf(y)ll < Lysllz = yll.

O,(f.a:) = f(@) + 3 D fla) by — 2]y € B
k=1

L
BI__ly —

p+1
(p+1)! .

f(y) = (f, z59)] <

12



Brief history of p-order acceleration

Nesterov, Y. E. (1983). A method for solving the convex programming problem with
convergence rate O (1/k” ). In Dokl. akad. nauk Sssr (Vol. 269, pp. 543-547).p = 1

Nesterov, Y. (2008). Accelerating the cubic regularization of Newton’s method on convex
problems. Mathematical Programming, 112(1), 159-181. p = 2 (not optimal)

Monteiro, R. D., & Svaiter, B. F. (2013). An accelerated hybrid proximal extragradient method
for convex optimization and its implications to second-order methods. SIAM Journal on

Optimization, 23(2), 1092-1125.p = 2

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization.
Mathematical Programming, 1-27. p > 2 (not optimal); p = 2,3 are implementable!

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., Uribe, C. A, ...
& Jiang, Q. (2019, June). Near Optimal Methods for Minimizing Convex Functions with

Lipschitz $p$-th Derivatives. In Conference on Learning Theory (pp. 1392-1393).p > 2
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Reminder

Algorithm 2 Composite accelerated algorithm of Nesterov-Monteiro—Svaiter

1: Input: f:R?—= R, L > 0.

2: /h)::O,yO:::rg
3 for k=0tok=K -1

4: Define A\py1 > 0 and yi1; € R? from

AN+l = =,
k1= 57

. N N N L N
e = axguin { 7B + (V@) = 22) + o) + 3y = 2|

Aky1 + \/)\%H + 4N g1 Ak

Ap41 — 9 ) Ak‘—i—l — Ak + k41

Ay A1
k+1 k+1

Ty

6 Tpy1 =T — A1V [ (Urs1) — ak1Vg(Yrs1).
7. end for

8: return yg

14



Main Algorithim

Algorithm 3 Accelerated Methaalgorithm (AM) (AM(xo,f,9,.p,H,K))
: Input: peN, f:R! R, g: R =R, H > 0.

2: A():O,y():x().
3. for k=0tok=K —1

4:  Define \i41 > 0 and yp..1 € R from

U Hlpa— &l p
2 p! p+1
where
p
1 ke , - . [ H - . 1
.11 = argmin . — "+ + u — 7.|P7
Yk+1 ygéRd { EA ) [y — 7x]" + 9(y) T 1)!H./ k|| }

)‘k7+1 + \//\%-H + 4Ak,+lAk

Ay1 = 5 , A1 = Ar + agyr
7 Ap ” CLA+1
Lk —
Apq1 AA+1

5 Tpgr = Tk — @1V (Urs1) — a1V (Yrt1)-
6: end for

7. return yg

15



Main Algorithim

Algorithm 3 Accelerated Methaalgorithm (AM) (AM(xo,f,9,.p,H,K))

: Input: peN, f:R! R, g: R =R, H > 0.
2: A():O,y():x().
3: for k=0tok=K —1

4:  Define \i41 > 0 and yp..1 € R from

1 Hllve.: — 7.1P 1
L Hym‘ Uk < P
2 p! p+1
where
. H ~ ||p+1
Ykt = argmin ¢ Q,(f, 7 y) + g(y) + Ny — @] (AP)
yeRd (]) + 1)'

Nest 44/ 085 + D Ay
2

Ay1 = , A1 = Ar + agyr

Ap ” CLA+1
Aji AA+1

Fr =

5 Tpgr = Tk — @1V (Urs1) — a1V (Yrt1)-
6: end for

7. return yg

16



Main Theorem

Theorem. Let y; — output of AM(xo,f,q,p,H k) after k iterations under
p>1land H> (p+ 1)L, . Then

¢, H RPH1

3p+1
k™2

F(yr) — F(z:) < (RC)

where ¢, = 2P (p + 1) /p!, R = ||z — z*||.
Moreover, if p > 2 for e: F'(yx) — F () < € at each iteration of AM we have

to solve auxiliary problem (AP) on (Ag41, Yk+1) at most O (In (7)) times.

Reminder:

L D*f(a) [y — alfy € R

0, (f29) = (@) + 31

7
I S
[

H
(p+1

Yk+1 = argmin {Qp(f: Try) +9(y) +
yeR?

TTEEN G NS

17



Main Drawback

The main theorem assumes that we have to solve (AP) exactly!

H
(p+1)

e = angmin § 84(0) i= (1. 59) + o) + gl =l b (AP)

yeRd

[s (f possible to relax this requirement? YESI

Let's use tnustead of (AP) the following (practical) criteria:

1
dp(p + 1)

|V (G| < IV F (i)l

ln this case the main theorem holds frue with minor correction:

12 ¢, H RPH!
Py) ~ Fz.) < C200— (RO

J

18



With what precision should we solve (AP)?

i
(p+1)

g = angain § 84(3) o= (1, 2:) + o) + o psly — @l ] (AP)

yeRd

£ F 15 r-umiformly convex with constant o, > 0

o .
F(y)>F(QZ)-F<VF($),y—ZC>—|—?||y—CEH y Qj,yERd.

Then

1

. r—1 /(1 \1! . ,
F(jst) — Fla.) < (—) IV F ()|

r r

Hence, if we want F(y,) — F(y:) < €. Then it's sufficiently to satisfy

Hvﬁ’f(ng)H — 0 ((er_lar)%)
19



With what precision should we solve (AP) when p =17

. . H .
Yes1 = argmin {sw, iiy) + 9) + oy - kaQ} (AP)

yeRd

Denote y* - the exact solution of (AP) and
L8 15 Lipschitz gradient constant of g.

Assume that

H
k1 — Y|l < |Zr — Y|
" 3H + 2L "

ln this case the main theorem holds frue with minor correction:

124H R?

(RC)

20



With what precision should we solve (AP) when p =17

. N H 5
g = axganin § (£, 3u50) + 906) + 5 Iy — @l | (AP)

ycRd
This condition

H
|Uk1 — Yppa || < 1Tk — Yy ]
N 3H + 2L -

1s very convenient from the theoretical point of view.

But its mam advantage 1s evidence that we can solve H-strongly convex
problem (AP) with desired accuracy with complexity that doesu + depend on
the desired precision &, where F(y,) — F(y:) < &,

This s principal moment that differs our analysis Form state of the art.

2



How to solve (AP) when g =07
min{F (z) == / (x)}

TERi

H N
Ykl = argmin< (Zp) + Y =D f(a) [y — 3]" + y—ap[PT (AP
+ e Z . )" o+ 1)!!\ | | (AP)

Nesterov, Y., & Polyak, B. T. (2006). Cubic regularization of Newton method and its global

performance. Mathematical Programming, 108(1), 177-205. p = 2 is implementable!
Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization.
Mathematical Programming, 1-27. p = 3 is implementable!

')C W< L\GVQ sz(jzk) — sz(jék) (l.{' COS'LS O(dTVf(x))) {'lﬁ-Q"l {'L\Q COP\'\P{-QXI.ILH {'O SO{V-Q
(AP) by using automatic differentiation and gradient descent in relative

smoothuness assumption one can solve auxiliary problem with the complexity
O (va(x) + d3> a.o.
Nesterov Y. Inexact basic tensor methods. - 2019/23. - CORE Preprint. p = 2
[£ we don’t want to calculate sz(fck) = sz(fck) and want to solve (AP) with
precision & (in Function), then the complexity will be O (va(x)é_%)

22



How to solve (AP) when g =07
(SuPer)HgPer—fasl' Second-order m-e/'l«oa(

H
k +1
Ykt1 = argm1n< (Tk) + —DF f(x — | + ly — zk|FT p (AP)
" yER Z . (p + 1)' )

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization.
Mathematical Programming, 1-27.

Nesterov, Y. (2020). Superfast second-order methods for unconstrained convex optimization.
CORE DP, 7, 2020.

For p = 2,3 (AP) has almost the same complexity according to the
developed method O (dTVf(x) +d3) a.0. and we really need only the

First and the second order oracle i both cases! So 1f we have 3-d order
smoothuess, we d better to choose in AM p =3, but to solve (AP) by

ustng second-order tnformation.

Kamzolov, D., & Gasnikov, A. (2020). Near-Optimal Hyperfast Second-Order Method for convex
optimization and its Sliding. arXiv preprint arXiv:2002.09050.

Nesterov, Y. (2020). Inexact high-order proximal-point methods with auxiliary search
procedure. CORE DP, 10, 2020.

23



Generalization to r-uniformly convex case (r < p + 1)

Algorithm 2 Restarted AM(xo,f,q9,p,r,0,,H,K)

1. Input: r-uniformly convex function F' = f + g : R — R with constant o,

and AM(xo,f,9,p,H,K).

2: 20 = Xy-
3: for k=0to K
4 Rk — RO y 2_k,

B 2 7 )
H2" L\ et
Nj, = max{ (rcp Rzﬂ T) 1 e

o fk+1 = YNy, where YN, — OutPUt of AM(Zkafagap7H)Nk)’
6: end for

7. return zx

24



Generalization to r-uniformly convex case (r < p + 1)

[f F 15 r-umiformly convex with constant o, > 0

Oy -

. . H -
Y41 = argmin {Qp(ﬁ Tisy) + g(y) 4 ,H”’/ — J;A,HIH} (AP)
yeRd (p+ 1)

Corollary. Let z. — output of Restarted AM after k iterations. If H >
(p+ 1)L, ¢, or > 0, then the total number of times we required to solve (AP)

for F'(z;) — F(x,) < € can be estimated as follows:

. H Rptl-r i
o[22

Oy
Note: Unfortunately, for the moment we don t kinow how fo use in

general additional r-uniform convexity of (AP) to reduce its complexity.
25



The matn novelty

1) We tntroduce general non proximal-friendly composite ferm g tn a special
manner tn AM, As we will see later this term allows us fo consider AM as

untversal accelerated envelop, that allows to accelerate different methods

that applied to (AP).

2) We develop a precise theory that doesn t requires to solve (AP) with the
precision defermined by the desired precision for wnitial problem. As we will
see later, this allows us to tmprove n Poly(log) times different procedures
[tke Catalyst, Accelerated Gradient Sliding.

26



VVicinities

1) Generalization to Hoelder smoothuess of elder derivatives

Song, C., & Ma, Y. (2019). Towards Unified Acceleration of High-Order Algorithms under
H\"{o}lder Continuity and Uniform Convexity. arXiv preprint arXiv:1906.00582.

2) Adaptive and Universal generalizations

Grapiglia, G. N., & Nesterov, Y. (2019). Tensor Methods for Minimizing Functions with
H\"{o}lder Continuous Higher-Order Derivatives. arXiv preprint arXiv:1904.12559.
Difficulties with auxiliary problem

3) Couvergence in norm of the gradient

Dvurechensky, P., Gasnikov, A., Ostroukhov, P., Uribe, C. A., & Ivanova, A. (2019). Near-
optimal tensor methods for minimizing the gradient norm of convex function. arXiv
preprint arXiv:1912.03381.

4) Generalization on variational nequalities

Bullins B. Highly smooth minimization of non-smooth problems // Conference on Learning
Theory. - 2020. - P. 988-1030.

Author does not consider implementation issues of 3-d order schemes. One can try to do it by
using Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex
optimization. Mathematical Programming, 1-2%.
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Applications of AM

Composite optimization: g 1s proximal-friendly

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, (1), 183-202.p =1

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1), 125-161.p=1

Catalyst: f=0, p=1. Accelerated proximal envelop, H= L

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. In
Advances in neural information processing systems (pp. 3384-3392).

Accelerated gradient sliding: g isn' t proximal-friendly, we apply AM for (AP)

Lan, G., & Ouyang, Y. (R016). Accelerated gradient sliding for structured convex optimization.

arXiv preprint arXiv:1609.04905.p=1
Kamzolov, D., Gasnikov, A., & Dvurechensky, P. (2020). On the optimal combination of tensor

optimization methods. arXiv preprint arXiv:2002.01004. p =2, 3

Accelerated methods for composite saddle pont problems: p =1

Alkousa, M., Dvinskikh, D., Stonyakin, F., & Gasnikov, A. (2019). Accelerated methods for
composite non-bilinear saddle point problem. arXiv preprint arXiv:1906.03620.
Lin, T\, Jin, C., & Jordan, M. (2020). Near-optimal algorithms for minimax optimization. arXiv

preprint arXiv:2002.02417.
Wang Y., Li J. Improved algorithms for convex-concave minimax optimization. arXiv preprint

arXiv:2006.06559
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Remember the matn algorithm

Algorithm 3 Accelerated Methaalgorithm (AM) (AM(xo,f,q,p,H,K))
. Input: peN, f:R! 5 R, g: R =R, H > 0.

2: Aozo,y():.fU().
3. for k=0tok=K -1

4: Define \p41 > 0 and yp..1 € R? from

1 Hl|lyp1 — 2|P1
= < Akt lyier = i — :
2 p! p+1
where
Yoo — axgmin 4 () +z DM () [y~ B gl) + oy — B (AP)

Nest 44081 + D1 Ay

Ak+1 = 9 ) Ak’+l — Ak’ T Ak+1
- Ap aA+1
k+1 A+1

o LTh+l - — Tk — ak:+lvf(ykr+l) - akr+lv9<ykr+l)-
6: end for

7. return yg

29



Some concrefe examples

Kernel SYM

min {F(x ZmaX{O 1 — yp(Ag, )} + 1<r Cr)}

reRd
A 1

That can be approximated

fl;llknl{ Zﬁ ((Ag, x) <’E C'il:)}

f(2)~ eln (1 F exp (1 - ykéAk,x>))

30



Some concrefe examples

New accelerated gradient sliding, p =1
l[dea: To use accelerated variance reduced methods for (AP)!

Let’s consider the following function

Z fr((Ag, x)) + %(:1:, C’x)}

1
m
k=1

min {F(:c) =

rER4

We assume that | f;/(y)| = O(1/e), matrix A = [Aq, ..., A,,]* has ms nonzero elements, maxg—1,._ ., [|Ax||3 = O(s),
where 1 < s < n and C'is positive semidefinite matrix, with A\, (C) < 1/(em).

Comment: The first term ts better to opfimize by accelerated variance
reduced scheme, the second ferm - by FGM. Can we split the complexities?
YES! This ts the first fime when we can provably splits complexities from
different types of oracles!

31



Kernel SVYM

Fast Gradient Method (Nesterov, 2018) requires

(5/€ + Amax(C)) R?
o[V )

iterations with the complexity of each iteration

O(ms+n2).

5 ( \/ )\maxiC)R2>

iterations of FGM for the second term in target function with the complexity of each iteration

For proposed 1n this paper approach we have

O(n?)

5 ( \/ (ms/;:) R2>

iterations of variance reduction algorithm (Allen-Zhu, 2017) with the complexity of each

and

O(s).



Kernel SVYM

New accelerated gradient sliding, p =1

From the table one can conclude that since Amax(C) < 1/(em) < s/e,

‘then our approach has better theoretical complexity.

Algorithm Complexity Reference
FGM O (/s (ms+n?)) (Nesterov, 2018)

Our approach O (gx/ms - s) + O (\/)‘mx(sc)m : n2> (Ivanova et al, 2020)

Ivanova, A., Gasnikov, A., Dvurechensky, P., Dvinskikh, D., Tyurin, A., Vorontsova, E., &
Pasechnyuk, D. (2020). Oracle complexity separation in convex optimization. arXiv preprint
arXiv:2002.02706.

https://github.com/DenisAltruist/Oracle-Complexity-Separation
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Reminder. Click-prediction model

min
xeR?

1 m
) =— Y £ A =log (1
m k=1

{F(X) = f(x) +%HX|I%}

CXp (—Yk<“k» x))>

Let s be a maxtmal number of nonzero elements tn a, and
L, =0 (||ak||2) = 0(s), k =1,....,m. The total complexity (arithmetic
operations) of optimal first-order variance-reduced schemes will be (we

consider p < 8)

(
0, Sm+S\/m

\

max L, R”

E

\

)

=0

( )
sR?
sSm—+ sS4/ m——
E

\ )

a.0,

[s 1t possible to solve this problem Faster? |£ € s small enough the answer s

YES. For that we should use accelerated fensor methods!
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Some concrefe examples

Hyper-fast Second-order method for click-prediction model

Kamzolov, D., & Gasnikov, A. (2020). Near-Optimal Hyperfast Second-Order Method for
convex optimization and its Sliding. arXiv preprint arXiv:2002.09050.

l[dea: For sum type problem Hesstan calculation can be comparable with
Hesstan tuversion. Try to use this by applying tensor method For sums!

1 m
min— »_ fi(x) + g(x)
k=1

xeR4 m

Ji(@) = log (1 + exp(—yr(ar, z)))

35



Some concrefe examples

Hyper-fast Second-order method for click-prediction model

xeR?

. B H
min < F(x) := — Z log (1 + exp (—yk(ak, x))) + —HxH%
M= 2

Hessiam calculation: O(szm) a.o0,

Hessian tnversion:  O(d’)  a.o.

( 1/5)
. . |/ L. -R*
Number of iterations: O ( >F ) , Lyp= 0( max ||ak||4> = 0(s?)

E k=1,....m
\ )

( .y 1/5)
Totally: o (s2m+d3)<SR) a.o.

€
\ J

30




Some concrefe examples

Accelerated variance reduced method for click-prediction model

(
Olsm+s

\

sR?
m_
e

)

)

(
=0|s
\

sR?
m_
€

\

J

a.0,

Hyper-fast Second-order method for click-prediction model

(

~/

0,

\

(52m + d3) (

s*R4

E

)1/5\

)

ASSMW\Q d3 — O(Szm), R2 — O(d) — é <S2/3m1/3>.

Then Hyper-fast method 1s better (f: ’

8/3

m

17/15

a.0,

37
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Some concrefe examples

Hyper-fast Second-order method for click-prediction model
. _ 1< B Kooz
)rclelg}i {F(x) =— ,; log <1 + exp ( vi{ay, x))) + 5 ||x||2}

So, tf s =0(1) and € = O (m™'1>)
hyper-fast scheme is the best one

Unfortunately, the requirement on accuracy ¢ is not very practical one.
[n the subsequaent (ecture Dmitry Kamzolov will explain how to make
the applicability of Hyper-fast Second-order scheme to sum-type
problems broader by using statistical preconditioned SPAG (ICML2020

workshop).
Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., & Massoulie, L. (2020). Statistically Preconditioned
Accelerated Gradient Method for Distributed Optimization. arXiv preprint arXiv:2002.10726.
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Some concrefe examples

Accelerated methods for composite saddle pornt problems

min max f(x, y)
x€Q, ye0,

We assume that f(x,y) is ~ l-smooth (has ~ 1 Lipschitz gradient) and .-

strongly convex on x and u,-strongly concave on y.

Stnce we have p,-strongly concavity on y, F(x) = maxf(x,y) = f(x, y(x)) has
yeo,

Lp ~ 1/p, Lipschitz gradient (see arXive:1311.03669).

So we can reduce saddle point problem to p -strongly convex and Ly-smooth
problem min F(x) with VF(x) = V_f(x, y(x)). The complexity of this

x€Q,

problem is OG/Lg/p,) ~ 1/, [ gi; calls of V. f(x,y(x)). But to obtain y(x)
with required accuracy we also required ~ 1/\//Ty V, f(x, y) calculations,

So, totally, we required ~ 1/ ,uyz,ux V., f(x,y) calculations
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Some concrefe examples

Catalyst acceleration for composite saddle point problems

min max f(x, y)
x€Q, ye0,

l[dea (arX1v:2002.02417): Based on minimax von Neumann-Sion-Kakutan

theorem let s rewrite saddle point problem as max minf(x,y) = max G(y)
ye, xeQ, yeg,

and apply Catalyst to the last problem with parameter H ~ 1,

The number of Catalyst tterations ~ 1/\//Ty . To solve auxtliary problem at
each iteration of Catalyst by using the the approach from the previous slide
(with p,:=H ~ 1) we require ~ 1/y/H?*u, ~ 1/\/ix V,f(x,y) caleulations
and ~ 1/y/Hu, ~ 1/\//736 V_f(x,y) calculations. So totally we required
~ 1/W V. f(x,y) and V f(x,y) calculations. This is a lower bound!
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Some references on modern

T-order acceleration schemes

Dvinskikh D. et al. Accelerated and nonaccelerated stochastic gradient descent with inexact
model // arXiv preprint arXiv:2004.04490. - 2020. Acceleration in model generality (composite
etc. for smooth stochastic convex programming)

Joulani P. et al. A Simpler Approach to Accelerated Stochastic Optimization: Iterative Averaging
Meets Optimism // ICML, 2020. Unified view on different acceleration schemes (Nesterov’s
acceleration, variance reduction acceleration) for smooth stochastic convex programming

Ene A., Nguyen H. L., Vladu A. Adaptive Gradient Methods for Constrained Convex Optimization
// arXiv preprint arXiv:2007.08840. - 2020. Adaptive (a la, AdaGrad) accelerated schemes for
smooth convex (stochastic) programming problems
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