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Smooth convex optimization
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min
x∈ℝd

f(x)

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y), t ∈ [0,1]



Smooth convex optimization
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min
x∈ℝd

f(x)

Function  has -Lipschitz continuous gradient if: f L

 ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥ ⇒

Function  is convex if: f

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ ∀x, y ∈ ℝd

Function  has is -strongly convex if: f μ

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ +
μ
2

∥y − x∥2 ∀x, y ∈ ℝd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L
2

∥y − x∥2 ∀x, y ∈ ℝd



Smooth convex optimization
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min
x∈ℝd

f(x)

How many times  we should calculate  to obtain : N ∇f(x) xN

?f(xN) − min
x∈ℝd

f(x) = f(xN) − f(x*) ≤ ε

Let’s introduce , where  is a starting point of considered 
algorithm. For gradient descent (when  is small enough or zero)

R = ∥x0 − x*∥ x0
μ

xk+1 = argmin {f(xk) + ⟨∇f(xk), x − xk⟩ +
L
2

∥x − xk∥2} = xk −
1
L

∇f(xk)

f(xN) − f(x*) ≤
LR2

2N
Does this algorithm optimal? NO!



Smooth convex optimization
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Does gradient descent optimal for convex optimization? NO!

The only thing we can 
improve in general by 
choosing another 
algorithm is to reduce 

.4 → 1



Smooth convex composite optimization
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min
x∈ℝd {F(x) := f(x) + g(x)}



Smooth convex composite optimization
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min
x∈ℝd {F(x) := f(x) + g(x)}

We assume that auxiliary problem

can be efficiently solved (  is proximal-friendly).g

min
x∈ℝd {F(x) :=

1
2

∥Ax − b∥2
2 + λ∥x∥1}

Example LASSO ( )L = λmax(AT A)

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical 
Programming, 140(1), 125-161.



Accelerated gradient sliding
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min
x∈ℝd {F(x) := f(x) + g(x)}

But if  is not proximal-friendly, what should we do?g

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020

Idea: To apply Accelerated Algorithm (AA) for next problem

This problem is -strongly convex. So we should apply proper restarted 
version of AA (see below). In this case the complexity splits ( ):  

L
Lf ≤ Lg

O
Lf R2

ε
Õ

LgR2

ε calls∇f  calls∇g



Data Science applications
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min
x∈ℝd {F(x) := f(x) + g(x)}

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020

But this is not an optimal bound. Optimal bound will be (variance reduction) 

O m
Lf R2

ε

O m + m
max LkR2

ε

 calls∇fk

 calls∇fk

f(x) :=
1
m

m

∑
k=1

fk(x)

If  is proximal-friendly, then Composite AA requiresg

If  is not proximal-friendly (Kernel SVM) it’s an open problem. See below!  g



Yahoo problem: Сlick-prediction model
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min
x∈ℝd {F(x) := f(x) +

μ
2

∥x∥2
2}

Let  be a maximal number of nonzero elements in  and , 
. The total complexity (arithmetic operations) of optimal first-

order variance-reduced schemes will be (we consider )  

s ak Lk = O (∥ak∥2)
k = 1,...,m

μ ≤ ε/∥x*∥2

O sm + s m
max LkR2

ε
a.o.

f(x) :=
1
m

m

∑
k=1

fk(x) fk(x) = log (1 + exp (−yk⟨ak, x⟩))

Is it possible to solve this problem faster? If  is small enough the answer is 
YES. For that we should use accelerated tensor methods!  

ε



where  - convex.f, g

Problem formulation
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Monteiro, R. D., & Svaiter, B. F. (2013). An accelerated hybrid proximal extragradient method 
for convex optimization and its implications to second-order methods. SIAM Journal on 
Optimization, 23(2), 1092-1125. p = 2

Nesterov, Y. E. (1983). A method for solving the convex programming problem with 
convergence rate O (1/k^ 2). In Dokl. akad. nauk Sssr (Vol. 269, pp. 543-547). p = 1

Nesterov, Y. (2008). Accelerating the cubic regularization of Newton’s method on convex 
problems. Mathematical Programming, 112(1), 159-181.  (not optimal)p = 2

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization. 
Mathematical Programming, 1-27.  (not optimal);  are implementable!p ≥ 2 p = 2,3

Brief history of -order accelerationp

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., Uribe, C. A., ... 
& Jiang, Q. (2019, June). Near Optimal Methods for Minimizing Convex Functions with 
Lipschitz $p$-th Derivatives. In Conference on Learning Theory (pp. 1392-1393). p ≥ 2

13



Reminder
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Main Algorithm
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Main Algorithm
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Main Theorem

Reminder: 
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Main Drawback

The main theorem  assumes that we have to solve (AP) exactly!

Is it possible to relax this requirement? YES!

Let’s use instead of (AP) the following (practical) criteria:

In this case the main theorem holds true with minor correction: 
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With what precision should we solve (AP)?

If  is -uniformly convex with constant F r σr > 0

Hence, if we want . Then it’s sufficiently to satisfyF(yk) − F(y*) ≤ ε

Then

19



With what precision should we solve (AP) when ?p = 1

Denote  - the exact solution of (AP) andy*k+1

Assume that

  is Lipschitz gradient constant of .Lg
1 g

In this case the main theorem holds true with minor correction: 

20



This condition

is very convenient from the theoretical point of view.  

But its main advantage is evidence that we can solve -strongly convex 
problem (AP) with desired accuracy with complexity that doesn’t depend on 
the desired precision , where .

H

ε F(yk) − F(y*) ≤ ε

With what precision should we solve (AP) when ?p = 1

This is principal moment that differs our analysis form state of the art.  
21



How to solve (AP) when ?g ≡ 0
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 Nesterov Y. Inexact basic tensor methods. – 2019/23. – CORE Preprint.  p = 2

Nesterov, Y., & Polyak, B. T. (2006). Cubic regularization of Newton method and its global 
performance. Mathematical Programming, 108(1), 177-205.  is implementable! 
Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization. 
Mathematical Programming, 1-27.  is implementable!

p = 2

p = 3
If we have  (it costs ) then the complexity to solve 

(AP) by using automatic differentiation and gradient descent in relative 
smoothness assumption one can solve auxiliary problem with the complexity 

 a.o.

D2f(x̃k) = ∇2f(x̃k) O(dT∇f(x))

Õ (T∇f(x) + d3)
If we don’t want to calculate  and want to solve (AP) with 

precision  (in function), then the complexity will be .

D2f(x̃k) = ∇2f(x̃k)
δ O (T∇f(x)δ− 1

6 )



How to solve (AP) when ?  
(Super)Hyper-fast Second-order method

g ≡ 0

23

Nesterov, Y. (2020). Superfast second-order methods for unconstrained convex optimization. 
CORE DP, 7, 2020.

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization. 
Mathematical Programming, 1-27.

For  (AP) has almost the same complexity according to the 

developed method  a.o. and we really need only the 

first and the second order oracle in both cases! So if we have 3-d order 
smoothness, we’d better to choose in AM , but to solve (AP) by 
using second-order information.

p = 2,3
Õ (dT∇f(x) + d3)

p = 3

Kamzolov, D., & Gasnikov, A. (2020). Near-Optimal Hyperfast Second-Order Method for convex 
optimization and its Sliding. arXiv preprint arXiv:2002.09050. 
Nesterov, Y. (2020). Inexact high-order proximal-point methods with auxiliary search 
procedure. CORE DP, 10, 2020.



Generalization to -uniformly convex case ( )r r ≤ p + 1
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If  is -uniformly convex with constant F r σr > 0

Generalization to -uniformly convex case ( )r r ≤ p + 1

Note: Unfortunately, for the moment we don’t know how to use in 
general additional -uniform convexity of (AP) to reduce its complexity.r
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1) We introduce general non proximal-friendly composite term  in a special 
manner in AM. As we will see later this term allows us to consider AM as 
universal accelerated envelop, that allows to accelerate different methods 
that applied to (AP).

g

The main novelty

2) We develop a precise theory that doesn’t requires to solve (AP) with the 
precision determined by the desired precision for initial problem. As we will 
see later, this allows us to improve in  times different procedures 
like Catalyst, Accelerated Gradient Sliding.

Poly(log)
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1) Generalization to Hoelder smoothness of elder derivatives 
Song, C., & Ma, Y. (2019). Towards Unified Acceleration of High-Order Algorithms under 
H\"{o}lder Continuity and Uniform Convexity. arXiv preprint arXiv:1906.00582. 

2) Adaptive and Universal generalizations 
Grapiglia, G. N., & Nesterov, Y. (2019). Tensor Methods for Minimizing Functions with 
H\"{o}lder Continuous Higher-Order Derivatives. arXiv preprint arXiv:1904.12559. 
Difficulties with auxiliary problem 

3)  Convergence in norm of the gradient 
Dvurechensky, P., Gasnikov, A., Ostroukhov, P., Uribe, C. A., & Ivanova, A. (2019). Near-
optimal tensor methods for minimizing the gradient norm of convex function. arXiv 
preprint arXiv:1912.03381. 

4)  Generalization on variational inequalities 
Bullins B. Highly smooth minimization of non-smooth problems // Conference on Learning 
Theory. – 2020. – P. 988-1030. 
Author does not consider implementation issues of 3-d order schemes. One can try to do it by 
using Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex 
optimization. Mathematical Programming, 1-27.

Vicinities



Applications of AM
Composite optimization:  is proximal-friendlyg
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Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical 
Programming, 140(1), 125-161. p = 1

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear 
inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. p = 1

Catalyst: , . Accelerated proximal envelop, f ≡ 0 p = 1 H = Lg
1

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. In 
Advances in neural information processing systems (pp. 3384-3392).

Accelerated gradient sliding:  isn’t proximal-friendly, we apply AM for (AP)g
Lan, G., & Ouyang, Y. (2016). Accelerated gradient sliding for structured convex optimization. 
arXiv preprint arXiv:1609.04905. p = 1 
Kamzolov, D., Gasnikov, A., & Dvurechensky, P. (2020). On the optimal combination of tensor 
optimization methods. arXiv preprint arXiv:2002.01004. p = 2, 3 

Accelerated methods for composite saddle point problems: p = 1

Lin, T., Jin, C., & Jordan, M. (2020). Near-optimal algorithms for minimax optimization. arXiv 
preprint arXiv:2002.02417.  
Wang Y., Li J. Improved algorithms for convex-concave minimax optimization. arXiv preprint 
arXiv:2006.06359

Alkousa, M., Dvinskikh, D., Stonyakin, F., & Gasnikov, A. (2019). Accelerated methods for 
composite non-bilinear saddle point problem. arXiv preprint arXiv:1906.03620.



Remember the main algorithm
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Some concrete examples

30

Kernel SVM



Some concrete examples
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New accelerated gradient sliding, p = 1

Idea: To use accelerated variance reduced methods for (AP)!

Comment:  The first term is better to optimize by accelerated variance 
reduced scheme, the second term - by FGM. Can we split the complexities? 
YES! This is the first time when we can provably splits complexities from 
different types of oracles!



Kernel SVM
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Kernel SVM
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New accelerated gradient sliding, p = 1

(Ivanova et al, 2020)

Ivanova, A., Gasnikov, A., Dvurechensky, P., Dvinskikh, D., Tyurin, A., Vorontsova, E., & 
Pasechnyuk, D. (2020). Oracle complexity separation in convex optimization. arXiv preprint 
arXiv:2002.02706.

https://github.com/DenisAltruist/Oracle-Complexity-Separation



Reminder. Сlick-prediction model
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min
x∈ℝd {F(x) := f(x) +

μ
2

∥x∥2
2}

Let  be a maximal number of nonzero elements in  and 
, . The total complexity (arithmetic 

operations) of optimal first-order variance-reduced schemes will be (we 
consider )  

s ak

Lk = O (∥ak∥2) = O(s) k = 1,...,m

μ ≤ ε

O sm + s m
max LkR2

ε
= O sm + s m

sR2

ε
a.o.

f(x) :=
1
m

m

∑
k=1

fk(x) fk(x) = log (1 + exp (−yk⟨ak, x⟩))

Is it possible to solve this problem faster? If  is small enough the answer is 
YES. For that we should use accelerated tensor methods!  

ε



Some concrete examples
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Hyper-fast Second-order method for click-prediction model

Kamzolov, D., & Gasnikov, A. (2020). Near-Optimal Hyperfast Second-Order Method for 
convex optimization and its Sliding. arXiv preprint arXiv:2002.09050.

Idea: For sum type problem Hessian calculation can be comparable with 
Hessian inversion. Try to use this by applying tensor method for sums!

min
x∈ℝd

1
m

m

∑
k=1

fk(x) + g(x)



Some concrete examples
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Hyper-fast Second-order method for click-prediction model

min
x∈ℝd {F(x) :=

1
m

m

∑
k=1

log (1 + exp (−yk⟨ak, x⟩)) +
μ
2

∥x∥2
2}

O (s2m) a.o.

Õ (
L3,FR4

ε )
1/5

, L3,F = O ( max
k=1,...,m

∥ak∥4) = O(s2)

 Hessian calculation:

 Hessian inversion: O (d3) a.o.

 Number of iterations:

Totally: Õ (s2m + d3) ( s2R4

ε )
1/5

a.o.



Some concrete examples
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Hyper-fast Second-order method for click-prediction model

Õ (s2m + d3) ( s2R4

ε )
1/5

a.o.

O sm + s m
sR2

ε
= O s m

sR2

ε
a.o.

Accelerated variance reduced method for click-prediction model

Assume , . 

Then Hyper-fast method is better if:  .

d3 = Õ(s2m) R2 = Õ(d) = Õ (s2/3m1/3)
s8/3m17/15

ε1/5
= Õ ( s11/6m2/3

ε1/2 )



Some concrete examples
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Hyper-fast Second-order method for click-prediction model

In the subsequent lecture  Dmitry Kamzolov will explain how to make 
the applicability of Hyper-fast Second-order scheme to sum-type 
problems broader by using statistical preconditioned SPAG (ICML2020 
workshop).

Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., & Massoulie, L. (2020). Statistically Preconditioned 
Accelerated Gradient Method for Distributed Optimization. arXiv preprint arXiv:2002.10726.

So, if  and s = Õ(1) ε = Õ (m−14/15)

min
x∈ℝd {F(x) :=

1
m

m

∑
k=1

log (1 + exp (−yk⟨ak, x⟩)) +
μ
2

∥x∥2
2}
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Accelerated methods for composite saddle point problems

min
x∈Qx

max
y∈Qy

f(x, y)

We assume that  is -smooth (has  Lipschitz gradient) and -
strongly convex on  and -strongly concave on .

f(x, y) ∼ 1 ∼ 1 μx

x μy y

Since we have -strongly concavity on ,  has 

  Lipschitz gradient (see arXive:1711.03669).

μy y F(x) = max
y∈Qy

f(x, y) = f(x, y(x))

LF ∼ 1/μy

So we can reduce saddle point problem to -strongly convex and -smooth 
problem  with . The complexity of this 

problem is  calls of . But to obtain  

with required accuracy we also required   calculations. 

So, totally, we required   calculations

μx LF

min
x∈Qx

F(x) ∇F(x) = ∇x f(x, y(x))

Õ( LF /μx) ∼ 1/ μyμx ∇x f(x, y(x)) y(x)

∼ 1/ μy ∇y f(x, y)

∼ 1/ μ2
y μx ∇y f(x, y)



Some concrete examples
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Catalyst acceleration for composite saddle point problems

The number of Catalyst iterations  . To solve auxiliary problem at 

each iteration of Catalyst by using the the approach from the previous slide 

(with )  we require   calculations 

and   calculations. So totally we required 

  and  calculations. This is a lower bound!

∼ 1/ μy

μy := H ∼ 1 ∼ 1/ H2μx ∼ 1/ μx ∇y f(x, y)

∼ 1/ Hμx ∼ 1/ μx ∇x f(x, y)
∼ 1/ μyμx ∇x f(x, y) ∇y f(x, y)

Idea (arXiv:2002.02417): Based on minimax von Neumann-Sion-Kakutani 
theorem let’s rewrite saddle point problem as  

and apply Catalyst to the last problem with parameter .

max
y∈Qy

min
x∈Qx

f(x, y) = max
y∈Qy

G(y)

H ∼ 1

min
x∈Qx

max
y∈Qy

f(x, y)



Ene A., Nguyen H. L., Vladu A. Adaptive Gradient Methods for Constrained Convex Optimization 
// arXiv preprint arXiv:2007.08840. – 2020.  Adaptive (a la AdaGrad) accelerated schemes for 
smooth convex (stochastic) programming problems

Joulani P. et al. A Simpler Approach to Accelerated Stochastic Optimization: Iterative Averaging 
Meets Optimism // ICML, 2020. Unified view on different acceleration schemes (Nesterov’s 
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Some references on modern 
1-order acceleration schemes
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